27 research outputs found

    PID controller design based on global optimization technique with additional constraints

    Get PDF
    This paper deals with design of PID controller with the use of methods of global optimization implemented in Matlab environment and Optimization Toolbox. It is based on minimization of a chosen integral criterion with respect to additional requirements on control quality such as overshoot, phase margin and limits for manipulated value. The objective function also respects user-defined weigh coefficients for its particular terms for a different penalization of individual requirements that often clash each other such as for example overshoot and phase margin. The described solution is designated for continuous linear time-invariant static systems up to 4th order and thus efficient for the most of real control processes in practice.Web of Science67316816

    Case studies on the use of LiveLink for MATLAB for evaluation and optimization of the heat sources in experimental borehole

    Get PDF
    In the Czech part of the Upper Silesian Coal Basin (Moravian-Silesian region, Czech Republic), there are many deposits of endogenous combustion (e.g., localized burning soil bodies, landfills containing industrial waste, or slag rocks caused by mining processes). The Hedwig mining dump represents such an example of these sites where, besides the temperature and the concentrations of toxic gases, electric and non-electric quantities are also monitored within the frame of experimentally proposed and patented technology for heat collection (the so-called "Pershing" system). Based on these quantities, this paper deals with the determination and evaluation of negative heat sources and the optimization of the positive heat source dependent on measured temperatures within evaluation points or on a thermal profile. The optimization problem is defined based on a balance of the heat sources in the steady state while searching for a local minimum of the objective function for the heat source. From an implementation point of view, it is the interconnection of the numerical model of the heat collector in COMSOL with a user optimization algorithm in MATLAB using the LiveLink for MATLAB. The results are elaborated in five case studies based on the susceptibility testing of the numerical model by input data from the evaluation points. The tests were focused on the model behavior in terms of preprocessing for measurement data from each chamber of the heat collector and for the estimated value of temperature differences at 90% and 110% of the nominal value. It turned out that the numerical model is more sensitive to the estimates in comparison with the measured data of the chambers, and this finding does not depend on the type optimization algorithm. The validation of the model by the use of the mean-square error led to the finding of optimal value, also valid with respect to the other evaluation.Web of Science205art. no. 129

    Control design of mixed sensitivity problem for educational model of helicopter

    Get PDF
    The paper deals with the design of H-∞ robust controller, particularly with mixed sensitivity problem for elevation control. It briefly introduces basic mathematical background concerning robust control approach, which is then applied for typical example of MIMO system, that is a helicopter model. The obtained results are verified on real educational physical model CE 150 by Humusoft, ltd

    Use Of REX Control System For The Ball On Spool Model

    Get PDF
    This paper deals with the design and implementation of linear quadratic controller (LQR) for modeling of Ball on Spool. The paper presents the entire process, starting from mathematical model through control design towards application of controller with the use of given hardware platform. Proposed solution by means of REX Control System provides a high level of user comfort regarding implementation of control loop, diagnostics and automatically generated visualization based on HTML5. It represents an ideal example of a complex nonlinear mechatronic system with a lot of possibilities to apply other types of controllers.Web of Science66421921

    Rotor failure compensation in a biplane quadrotor based on virtual deflection

    Get PDF
    A biplane quadrotor is a hybrid type of UAV that has wide applications such as payload pickup and delivery, surveillance, etc. This simulation study mainly focuses on handling the total rotor failure, and for that, we propose a control architecture that does not only handle rotor failure but is also able to navigate the biplane quadrotor to a safe place for landing. In this structure, after the detection of total rotor failure, the biplane quadrotor will imitate reallocating control signals and then perform the transition maneuver and switch to the fixed-wing mode; control signals are also reallocated. A synthetic jet actuator (SJA) is used as the redundancy that generates the desired virtual deflection to control the pitch angle, while other states are taken care of by the three rotors. The SJA has parametric nonlinearity, and to handle it, an inverse adaptive compensation scheme is applied and a closed-loop stability analysis is performed based on the Lyapunov method for the pitch subsystem. The effectiveness of the proposed control structure is validated using numerical simulation carried out in the MATLAB Simulink.Web of Science67art. no. 17

    Dual observer based adaptive controller for hybrid drones

    Get PDF
    A biplane quadrotor (hybrid vehicle) benefits from rotary-wing and fixed-wing structures. We design a dual observer-based autonomous trajectory tracking controller for the biplane quadrotor. Extended state observer (ESO) is designed for the state estimation, and based on this estimation, a Backstepping controller (BSC), Integral Terminal Sliding Mode Controller (ITSMC), and Hybrid Controller (HC) that is a combination of ITSMC + BSC are designed for the trajectory tracking. Further, a Nonlinear disturbance observer (DO) is designed and combined with ESO based controller to estimate external disturbances. In this simulation study, These ESO-based controllers with and without DO are applied for trajectory tracking, and results are evaluated. An ESO-based Adaptive Backstepping Controller (ABSC) and Adaptive Hybrid controller (AHC) with DO are designed, and performance is evaluated to handle the mass change during the flight despite wind gusts. Simulation results reveal the effectiveness of ESO-based HC with DO compared to ESO-based BSC and ITSMC with DO. Furthermore, an ESO-based AHC with DO is more efficient than an ESO-based ABSC with DO.Web of Science71art. no. 4

    Comparison of smoothing filters in analysis of EEG data for the medical diagnostics purposes

    Get PDF
    This paper covers a brief review of both the advantages and disadvantages of the implementation of various smoothing filters in the analysis of electroencephalography (EEG) data for the purpose of potential medical diagnostics. The EEG data are very prone to the occurrence of various internal and external artifacts and signal distortions. In this paper, three types of smoothing filters were compared: smooth filter, median filter and Savitzky-Golay filter. The authors of this paper compared those filters and proved their usefulness, as they made the analyzed data more legible for diagnostic purposes. The obtained results were promising, however, the studies on finding perfect filtering methods are still in progress.Web of Science203art. no. 80

    Functionality analysis of electric actuators in renewable energy systems - A review

    Get PDF
    Various mechanical, hydraulic, pneumatic, electrical, and hybrid actuators can alter motion per the requirements of particular applications. However, except for electrical ones, all actuators are restricted due to their size, complex auxiliary equipment, frequent need for maintenance, and sluggish environment in renewable applications. This brief review paper highlights some unique and significant research works on applying electrical actuators to renewable applications. Four renewable energy resources, i.e., solar, wind, bio-energy, and geothermal energy, are considered to review electric actuators applicable to renewable energy systems. This review analyses the types of actuators associated with the mentioned renewable application, their functioning, their motion type, present use, advantages, disadvantages, and operational problems. The information gathered in this paper may open up new ways of optimization opportunities and control challenges in electrical actuators, thereby making more efficient systems. Furthermore, some energy-efficient and cost-effective replacements of convectional actuators with new innovative ones are suggested. This work aims to benefit scientists and new entrants working on actuators in renewable energy systems.Web of Science2211art. no. 427

    Disturbance observer-based backstepping control of tail-sitter UAVs

    Get PDF
    The application scope of unmanned aerial vehicles (UAVs) is increasing along with commensurate advancements in performance. The hybrid quadrotor vertical takeoff and landing (VTOL) UAV has the benefits of both rotary-wing aircraft and fixed-wing aircraft. However, the vehicle requires a robust controller for takeoff, landing, transition, and hovering modes because the aerodynamic parameters differ in those modes. We consider a nonlinear observer-based backstepping controller in the control design and provide stability analysis for handling parameter variations and external disturbances. We carry out simulations in MATLAB Simulink which show that the nonlinear observer contributes more to robustness and overall closed-loop stability, considering external disturbances in takeoff, hovering and landing phases. The backstepping controller is capable of decent trajectory-tracking during the transition from hovering to level flight and vice versa with nominal altitude drop.Web of Science106art. no. 11

    Kalman filter and variants for estimation in 2DOF serial flexible link and joint using fractional order PID controller

    Get PDF
    Robotic manipulators have been widely used in industries, mainly to move tools into different specific positions. Thus, it has become necessary to have accurate knowledge about the tool position using forward kinematics after accessing the angular locations of limbs. This paper presents a simulation study in which an encoder attached to the limbs gathers information about the angular positions. The measured angles are applied to the Kalman Filter (KF) and its variants for state estimation. This work focuses on the use of fractional order controllers with a Two Degree of Freedom Serial Flexible Links (2DSFL) and Two Degree of Freedom Serial Flexible Joint (2DSFJ) and undertakes simulations with noise and a square wave as input. The fractional order controllers fit better with the system properties than integer order controllers. The KF and its variants use an unknown and assumed process and measurement noise matrices to predict the actual data. An optimisation problem is proposed to achieve reasonable estimations with the updated covariance matrices.Web of Science1115art. no. 669
    corecore